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Abstract
Simple and analytically tractable expressions for functional determinants are
known to exist for many cases of interest. We extend the range of situations
for which these hold to cover systems of self-adjoint operators of the Sturm–
Liouville type with arbitrary linear boundary conditions. The results hold
whether or not the operators have negative eigenvalues. The physically
important case of functional determinants of operators with a zero mode, but
where that mode has been extracted, is studied in detail for the same range of
situations as when no zero mode exists. The method of proof uses the properties
of generalized zeta-functions. The general form of the final results is the same
for the entire range of problems considered.

PACS numbers: 02.30.−f, 11.15.Kc

1. Introduction

This paper is concerned with the rather elegant, and surprisingly simple, expressions that exist
for the functional determinants of certain types of differential operators. In an earlier paper [1],
we introduced a new method for deriving these expressions for operators of a relatively simple
kind, which only used elementary ideas from complex analysis and the theory of differential
equations. Here we extend the class of problems which may be analysed using this technique.
Although the discussion necessarily becomes more technical, the essential points remain the
same, and we are able to derive the desired results without the need for any very sophisticated
machinery.

The derivation of formulae of this kind is a topic which has been investigated by numerous
authors in the past. In our earlier paper [1], we gave a brief history of the subject. Essentially,
most of the early results were obtained by theoretical physicists who were typically interested
in the expressions obtained when carrying out Gaussian functional integrals [2–4]. These
results were then extended and elaborated in a number of ways [5–19]. However, many of
these latter treatments were quite abstract, and also did not deal with the case where the
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operator has a zero eigenvalue (a ‘zero mode’). This situation is quite commonly encountered
in real problems in theoretical physics, since in many cases a continuous symmetry in the
problem is broken, and a zero mode is generated by Goldstone’s theorem [20]. Although
there has been some work carried out to determine the form of functional determinants with
zero modes excluded [21–23], the methods that were used involved the use of a regularization
procedure which could have produced results which were not independent of the scheme
adopted.

These were the motivations for our approach described in [1]. The method used a
generalized zeta-function [24–26] to calculate the functional determinants, but the analysis
involved only methods which are familiar to theoretical physicists. It also covered the
physically interesting situation where operators had zero modes which were excluded from
the evaluation of the functional determinants. The method was described for simple operators
of the type −d2/dx2 + R(x), but for general linear boundary conditions. In the present paper
we extend this treatment in several ways. Firstly, we derive the results for the general Sturm–
Liouville operator −d/dx(P (x) d/dx) + R(x). Secondly, we allow for the fact that operators
will, in general, have negative eigenvalues. Thirdly, we generalize the entire formalism to
systems of second-order operators. In all cases we derive the results for functional determinants
of operators which do not have a zero mode, and for those which do, but where it has been
extracted.

The outline of the paper is as follows. In section 2 we discuss the formalism for the general
Sturm–Liouville operator, modifying our previous treatment to cover the case of arbitrary
P(x) > 0 and operators with negative eigenvalues. We restrict ourselves to operators with no
zero mode; this case is discussed in section 3. In section 4 it is shown how the results of these
two sections carry over to systems of r > 1 degrees of freedom. We conclude in section 5
with a summary of the results of the paper and suggestions for future work. There are three
appendices. In appendix A we discuss the conditions which have to be imposed so that the
operator is self-adjoint and give details of some technical calculations that are required in the
development of the theory. In appendix B some results on the asymptotic form of solutions
of differential equations, which are used in the main text, are derived. In appendix C some of
the more technical aspects of dealing with zero modes in systems of differential equations are
presented.

2. One component

In this section we will describe our approach in the context of operators of the form

Lj = − d

dx

(
Pj (x)

d

dx

)
+ Rj(x) (1)

on the interval I = [0, 1]. The structure displayed in (1) is the most general that is possible for
a self-adjoint second-order differential operator of the Sturm–Liouville type. The functions
Pj (x) and Rj(x) are assumed to be continuous on the interval I. In addition, we assume
that the metric, Pj (x), is positive throughout the interval under consideration. The index j

takes on only two values: the operator L1 is the real focus of interest, but in order to control
divergences in det L1, we actually consider the ratio det L1/ det L2, where L2 is appropriately
chosen. Typically L2 will be taken to be ‘simple’ in a sense that it can act as a reference with
which det L1 can be compared.

The eigenproblem corresponding to (1) is

Ljuj,
√

λ(x) = λuj,
√

λ(x). (2)
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Note the symmetry uj,
√

λ = uj,−√
λ. It is convenient to go over to a first-order formalism and in

order to have the most natural formulation we define a new function vj,
√

λ(x) ≡ Pj (x)u′
j,

√
λ
(x).

Then from (1) we have that

d

dx

(
uj,

√
λ(x)

vj,
√

λ(x)

)
=

(
0 P −1

j (x)

Rj (x) − λ 0

) (
uj,

√
λ(x)

vj,
√

λ(x)

)
. (3)

We will adopt the notation

uj,
√

λ(x) =
(

uj,
√

λ(x)

vj,
√

λ(x)

)
Dj,λ =

(
0 P −1

j (x)

Rj (x) − λ 0

)
(4)

in which case (3) may be written as

duj,
√

λ(x)

dx
= Dj,λ(x)uj,

√
λ(x). (5)

It is useful at this stage to introduce two unique, independent solutions of the differential
equation (2). The solutions are made unique by specifying the ‘initial conditions’, that is, the
value of the solutions and their derivatives at x = 0. Denoting these two solutions by u

(1)

j,
√

λ
(x)

and u
(2)

j,
√

λ
(x), the most general solution of (2) may then be expressed as

(
uj,

√
λ(x)

vj,
√

λ(x)

)
= α


u

(1)

j,
√

λ
(x)

v
(1)

j,
√

λ
(x)


 + β


u

(2)

j,
√

λ
(x)

v
(2)

j,
√

λ
(x)


 =


u

(1)

j,
√

λ
(x) u

(2)

j,
√

λ
(x)

v
(1)

j,
√

λ
(x) v

(2)

j,
√

λ
(x)




(
α

β

)
. (6)

We now define the two matrices

Ej,
√

λ(x) =

u

(1)

j,
√

λ
(x) u

(2)

j,
√

λ
(x)

v
(1)

j,
√

λ
(x) v

(2)

j,
√

λ
(x)


 Hj,

√
λ(x) =


u

(1)

j,
√

λ
(x) u

(2)

j,
√

λ
(x)

u
(1)′

j,
√

λ
(x) u

(2)′

j,
√

λ
(x)


 (7)

which are related by

Ej,
√

λ(x) =
(

1 0

0 Pj (x)

)
Hj,

√
λ(x). (8)

It follows that det Ej,
√

λ(x) = Pj (x) det Hj,
√

λ(x). Since u
(1)

j,
√

λ
(x) and u

(2)

j,
√

λ
(x) are

independent solutions, det Hj,
√

λ �= 0, and therefore det Ej,
√

λ �= 0 because Pj (x) > 0 ∀x.
Furthermore, because det Ej,

√
λ(x) is the Wronski determinant for the differential operator

(4), we see that det Ej,
√

λ(x) is independent of x. A convenient choice for the set of initial
conditions is Ej,

√
λ(0) = I2 (here, and throughout the paper, Im is the m × m unit matrix).

From this it follows that det Ej,
√

λ(x) = 1 ∀x ∈ [0, 1]. Also with this choice for the initial

conditions on u
(1)

j,
√

λ
(x) and u

(2)

j,
√

λ
(x), it follows from (6) that α = uj,

√
λ(0) and β = vj,

√
λ(0),

that is,

uj,
√

λ(x) = uj,
√

λ(0)u
(1)

j,
√

λ
(x) + vj,

√
λ(0)u

(2)

j,
√

λ
(x) (9)

or in terms of the first-order formalism,(
uj,

√
λ(x)

vj,
√

λ(x)

)
= Ej,

√
λ(x)

(
uj,

√
λ(0)

vj,
√

λ(0)

)
. (10)

So far no mention has been made of the boundary conditions on (2). These take the form
of two conditions on the set {uj,

√
λ(0), u′

j,
√

λ
(0), uj,

√
λ(1), u′

j,
√

λ
(1)}. These can be converted
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into conditions on uj,
√

λ at the boundaries, and for the case of linear boundary conditions

M

(
uj,

√
λ(0)

vj,
√

λ(0)

)
+ N

(
uj,

√
λ(1)

vj,
√

λ(1)

)
=

(
0
0

)
(11)

where M and N are 2 × 2 matrices whose entries characterize the nature of the boundary
conditions. Using (10) these boundary conditions may be written as

[M + NEj,
√

λ(1)]

(
uj,

√
λ(0)

vj,
√

λ(0)

)
=

(
0
0

)
(12)

and so the condition on λ for eigenfunctions to exist is

det[M + NEj,
√

λ(1)] = 0. (13)

The equations (11) are the most general linear boundary conditions. They fall naturally
into two classes:

(i) det M = 0, det N = 0. In this case we can show that the matrices M and N may be chosen
to be of the form,

M =
(

A B

0 0

)
N =

(
0 0

C D

)
(14)

that is, the boundary conditions are of the Robin type: Auj,
√

λ(0) + Bvj,
√

λ(0) = 0 and
Cuj,

√
λ(1) + Dvj,

√
λ(1) = 0.

First, let us prove that det M = 0 and det N = 0 implies that Muj,
√

λ(0) = 0 and
Nuj,

√
λ(1) = 0. To see this, define u′

j,
√

λ
(x) = Q−1uj,

√
λ(x) and multiply (11) by

P, where P and Q are arbitrary non-singular matrices. Then defining M ′ = PMQ and
N ′ = PNQ, we obtain the same boundary conditions but in the primed system. However,
since M has rank 1, we may choose P and Q in such a way that M ′ = diag(1, 0) or
diag(0, 1). Furthermore, since N ′ has zero determinant it must have one of the following
four forms:

A1 =
(

a b

ka kb

)
A2 =

(
ka kb

a b

)

A3 =
(

a ka

b kb

)
A4 =

(
ka a

kb b

)
.

Writing out the boundary conditions explicitly when M ′ = diag(1, 0) and N ′ has each of
these four forms, we find that for all cases where there are two independent conditions,
u′

j,
√

λ
(0) = 0, that is, M ′u′

j,
√

λ
(0) = 0. Similarly, if M ′ = diag(0, 1), we find that for all

four possible forms of N ′, all valid boundary conditions lead to v′
j,

√
λ
(0) = 0, which for

this choice of M ′ once again gives M ′u′
j,

√
λ
(0) = 0. Returning to the unprimed system

this implies that Muj,
√

λ(0) = 0 and so from (11), Nuj,
√

λ(1) = 0, as required.
We may now use the fact that M and N separately must have one of the forms A1, . . . , A4.

In each case there is only one independent relation of the Robin type. This may be written
in the language of M and N matrices by adopting the forms (14).

(ii) det N �= 0. In appendix B we show that this implies that det M �= 0. Then, from (11),(
uj,

√
λ(0)

vj,
√

λ(0)

)
= −M−1N

(
uj,

√
λ(1)

vj,
√

λ(1)

)
.
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cut for λ−s

λ-plane

Figure 1. Contour γ in the complex plane.

Since N is not null, neither is M−1N , and so either uj,
√

λ(0) or vj,
√

λ(0) depend on the
boundary conditions at x = 1. Boundary conditions such as these are called two-point
boundary conditions, or non-separated boundary conditions, in contrast to the one-point
or separated boundary conditions described by (14).

After this short review of the background, we are now in a position to describe our method
for obtaining the basic formula for det L1/ det L2. The starting point is the observation from
(13) that the function det[M + NEj,

√
λ(1)] has zeros at values λ which are eigenvalues of Lj , as

given by (2). An alternative statement is that the logarithmic derivative of det[M + NEj,
√

λ(1)]
has a simple pole with unit residue at these values of λ. This allows us to define the zeta
function of Lj by

ζLj
(s) = 1

2π i

∫
γ

dλ λ−s d

dλ
ln det[M + NEj,

√
λ(1)] (15)

where the contour γ is counterclockwise and encloses all eigenvalues as shown in figure 1.
As given, the representation is valid for Re s > 1/2. In this section we assume that there

are no zero modes, but note that we allow for negative eigenvalues. In order to avoid the
negative eigenvalues lying on the cut of the complex square root, we define the branch cut to
be at an angle θ to the positive real axis. For most applications it is the ratio of determinants
of two operators that naturally occurs. This is found by analysing

ζL1(s) − ζL2(s) = 1

2π i

∫
γ

dλ λ−s d

dλ
ln

det[M + NE1,
√

λ(1)]

det[M + NE2,
√

λ(1)]
. (16)

The first idea is to deform the contour such that it encloses the branch cut of λ−s . In order to
see in which range of s-values this is possible, let us consider the large-Im

√
λ behaviour of

the integrand.
As shown in appendix B, we have for P1(x) = P2(x) as Im

√
λ → ±∞ the behaviour

d

dλ
ln

det[M + NE1,
√

λ(1)]

det[M + NE2,
√

λ(1)]
= O

(
1

λ3/2

)
. (17)

So for −1/2 < Re s < 1 we can shift the contour such as to enclose the cut and ultimately we
can shrink it to the cut. Taking due care of the definition of the complex root near the cut, we
find for the upper part

ζ u
L1

(s) − ζ u
L2

(s) = − 1

2π i
e−isθ

∫ ∞

0
dλ λ−s d

dλ
ln

det[M + NE1,eiθ/2
√

λ(1)]

det[M + NE2,eiθ/2
√

λ(1)]
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whereas for the lower part we have

ζ l
L1

(s) − ζ l
L2

(s) = 1

2πi
eis(2π−θ)

∫ ∞

0
dλ λ−s d

dλ
ln

det[M + NE1,e−i(π−θ/2)
√

λ(1)]

det[M + NE2,e−i(π−θ/2)
√

λ(1)]
.

Using the symmetry Ej,eiθ/2
√

λ(1) = Ej,e−i(π−θ/2)
√

λ(1), these contributions add up to yield

ζL1(s) − ζL2(s) = 1

2π i
(eis(2π−θ) − e−isθ )

∫ ∞

0
dλ λ−s d

dλ
ln

det[M + NE1,eiθ/2
√

λ(1)]

det[M + NE2,eiθ/2
√

λ(1)]

= eis(π−θ) sin(πs)

π

∫ ∞

0
dλ λ−s d

dλ
ln

det[M + NE1,eiθ/2
√

λ(1)]

det[M + NE2,eiθ/2
√

λ(1)]
. (18)

For θ = π and Pj (x) = 1 this reduces to the result of our previous paper [1]. This type of
result is now perfectly suited for the evaluation of the determinant quotient. The prefactor
disappears at s = 0 and so

ζ ′
L1

(0) − ζ ′
L2

(0) = −ln
det[M + NE1,0(1)]

det[M + NE2,0(1)]
. (19)

In particular, we note that the answer does not depend on the angle θ . Simplifying notation
we define

yj (x) = lim√
λ→0

uj,
√

λ(x) y
(a)
j (x) = lim√

λ→0
u

(a)

j,
√

λ
(x)(a = 1, 2) Yj (x) = lim√

λ→0
Ej,

√
λ(x).

(20)

We will refer to yj (x) and y
(a)
j (x) as homogeneous solutions since they all satisfy the equation

Ljyj (x) = 0. Then the result is from (19)

det L1

det L2
= det[M + NY1(1)]

det[M + NY2(1)]
. (21)

This is formally identical to the result we obtained when Pj (x) = 1 and all of the eigenvalues
were positive [1]. This shows that this simple result is obtained even with the added
complications of non trivial metrics and negative eigenvalues, as long as L2 is chosen so
that P2(x) = P1(x).

3. Determinants with zero modes extracted

In this section we discuss the evaluation of determinants of operators which have a zero
eigenvalue and where this eigenvalue has been extracted in the definition of the determinant.
We shall indicate this exclusion with a prime: thus det′ L will denote the determinant of
the operator L with the zero mode extracted. Clearly the method used in the last section
to derive the formula for the ratio of determinants runs into difficulty when evaluating such
determinants. Even if the contour γ is chosen to only surround the non-zero values of λ, the
deformation of this contour to the branch cut will encounter the pole at the origin. Rather
than dealing directly with this extra singularity, we can look for a function which vanishes at
all the non-zero values of λ but not at the zero eigenvalue. This function can then be used as
the basis of the definition of a (modified) zeta-function, from which det′ L can be calculated.
As we will show in this section, the quantity f1,

√
λ ≡ (−1/λ) det(M + NE1,

√
λ(1)) has these

properties: it clearly vanishes at all the required non-zero values of λ by (13) and we will show
that f1,0 �= 0. Since we will assume that the ‘normalizing’ operator L2 has no zero modes, j

will be set equal to 1 throughout any discussion involving zero modes.
The first step in the derivation is relevant even if there is no zero mode. It consists of

demanding that the solution uj,
√

λ(x) = αu
(1)

j,
√

λ
(x) + βu

(2)

j,
√

λ
(x) satisfies one of the boundary
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conditions. We may choose either one of the conditions to be satisfied, but in general it will
fix the functional form of uj,

√
λ(x) by determining the ratio of α to β. In the special cases

of Dirichlet and Neumann boundary conditions it will result in α and β, respectively, being
set equal to zero. Although the normalization of uj,

√
λ(x) is obviously left undetermined, we

shall now show that a suitable choice of normalization results in a significant simplification of
the analysis.

To see this let us write out the boundary conditions (11) in full:

m11uj,
√

λ(0) + m12vj,
√

λ(0) + n11uj,
√

λ(1) + n12vj,
√

λ(1) = 0 (22)

m21uj,
√

λ(0) + m22vj,
√

λ(0) + n21uj,
√

λ(1) + n22vj,
√

λ(1) = 0. (23)

Now consider the explicit form of the matrix M + NEj,
√

λ(1):
m11 + n11u

(1)

j,
√

λ
(1) + n12v

(1)

j,
√

λ
(1) m12 + n11u

(2)

j,
√

λ
(1) + n12v

(2)

j,
√

λ
(1)

m21 + n21u
(1)

j,
√

λ
(1) + n22v

(1)

j,
√

λ
(1) m22 + n21u

(2)

j,
√

λ
(1) + n22v

(2)

j,
√

λ
(1)


 (24)

where we have used the definition of Ej,
√

λ given in (7). If we add β/α times column 2 to
column 1 of (24) we get a second matrix whose first column is just α−1 times the boundary
conditions given in (22) and (23) (remembering that Ej,

√
λ(0) = I2). So suppose we ask that

only the boundary condition (22) is satisfied. Since the determinants of both these matrices
are equal, it follows that

det(M + NEj,
√

λ(1)) = α−1{m21uj,
√

λ(0) + m22vj,
√

λ(0) + n21uj,
√

λ(1) + n22vj,
√

λ(1)}
× (−1)

(
m12 + n11u

(2)

j,
√

λ
(1) + n12v

(2)

j,
√

λ
(1)

)
.

Therefore, if we make the choice

α = −(
m12 + n11u

(2)

j,
√

λ
(1) + n12v

(2)

j,
√

λ
(1)

)
(25)

then

det(M + NEj,
√

λ(1)) = m21uj,
√

λ(0) + m22vj,
√

λ(0) + n21uj,
√

λ(1) + n22vj,
√

λ(1). (26)

Similarly if we add α/β of column 1 to column 2 of (24) we get another matrix whose second
column is just β−1 times the boundary conditions given in (22) and (23). Again choosing the
first boundary condition to be satisfied, and also now asking that (26) holds, then we determine
β to be given by

β = (
m11 + n11u

(1)

j,
√

λ
(1) + n12v

(1)

j,
√

λ
(1)

)
. (27)

So in summary, we have shown that if we take a solution of (2) of the form

uj,
√

λ(x) = −(
m12 + n11u

(2)

j,
√

λ
(1) + n12v

(2)

j,
√

λ
(1)

)
u

(1)

j,
√

λ
(x)

+
(
m11 + n11u

(1)

j,
√

λ
(1) + n12v

(1)

j,
√

λ
(1)

)
u

(2)

j,
√

λ
(x) (28)

then

M

(
uj,

√
λ(0)

vj,
√

λ(0)

)
+ N

(
uj,

√
λ(1)

vj,
√

λ(1)

)
=

(
0

det(M + NEj,
√

λ(1))

)
. (29)

That is, if uj,
√

λ(x) is chosen to satisfy only one boundary condition (in this case the first),
and its normalization is chosen appropriately, then det(M + NEj,

√
λ(1)) will be directly

proportional to the expression on the left-hand side of the boundary condition (23), with a
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constant of proportionality equal to unity. As far as we are concerned in this paper, the relation
(29) has two important consequences:

(i) If there is no zero mode in the problem, we can simply take the limit λ → 0 in the above
formulae and get a simplified, and more explicit, expression for the result (21). To do this
we choose the particular solution of the homogeneous equation Ljyj (x) = 0 to be

yj (x) = −(
m12 + n11y

(2)
j (1) + n12Pj (1)y

(2)′
j (1)

)
y

(1)
j (x)

+
(
m11 + n11y

(1)
j (1) + n12Pj (1)y

(1)′
j (1)

)
y

(2)
j (x). (30)

In terms of this particular solution, the λ → 0 limit of (26) may be used to write the result
(21) as

det L1

det L2
= m21y1(0) + m22P1(0)y ′

1(0) + n21y1(1) + n22P1(1)y ′
1(1)

m21y2(0) + m22P2(0)y ′
2(0) + n21y2(1) + n22P2(1)y ′

2(1)
. (31)

(ii) If there is a zero mode, instead of taking the limit λ → 0, we use (26) as the source of the
two relationships we need to show, namely that det(M + NE1,

√
λ(1)) ∼ λ for small |λ|,

and in particular that f1,
√

λ defined earlier, satisfies f1,0 �= 0. We now discuss in more
detail how this is carried out.

Let us begin by defining the Hilbert space product of u1,
√

λ(x) and u1,0(x) on L2(I ) by

〈u1,0|u1,
√

λ〉 =
∫ 1

0
dx u1,0(x)∗u1,

√
λ(x) (32)

where * denotes complex conjugation. So multiplying (2) by u1,0(x)∗ and integrating gives∫ 1

0
dx u1,0(x)∗L1u1,

√
λ(x) = λ〈u1,0|u1,

√
λ〉.

By partial integration we get boundary terms plus L1u1,0(x)∗. This latter term is zero, so
therefore

[u1,
√

λ(x)v1,0(x)∗ − u1,0(x)∗v1,
√

λ(x)]1
0 = λ〈u1,0|u1,

√
λ〉. (33)

We can now use (29) to solve for two members of the set {u1,
√

λ(0), v1,
√

λ(0), u1,
√

λ(1),

v1,
√

λ(1)} in terms of the other two and det(M + NE1,
√

λ(1)). An exactly analogous procedure
is carried out on the set {u1,0(0)∗, v1,0(0)∗, u1,0(1)∗, v1,0(1)∗}, but in this case u1,0(x) satisfies
both of the boundary conditions, and so (11), rather than (29), should be used. This procedure
is discussed in more detail in appendix A, where it is shown that substituting the expressions
for these four quantities into the left-hand side of equation (33) shows that it is directly
proportional to det(M + NE1,

√
λ(1)). The constant of proportionality (denoted by B−1) is

independent of λ, and only depends on the nature of the boundary conditions and on the λ = 0
solution u1,0(x) at the boundaries. Therefore we may write

det(M + NE1,
√

λ(1)) = B[u1,
√

λ(x)v1,0(x)∗ − u1,0(x)∗v1,
√

λ(x)]1
0 = Bλ〈u1,0|u1,

√
λ〉. (34)

It should be stressed that while u1,0(x) satisfies both boundary conditions, u1,
√

λ(x)(λ �= 0)

satisfies only one (together with a normalization condition), in other words, it has the form
(28). If the other boundary condition is imposed, λ is restricted to take on values for which λ

is an eigenvalue, and we see from (34) that the orthogonality condition 〈u1,0|u1,
√

λ〉 = 0 holds
by virtue of (13).

The constant B is determined in appendix A, where the related question of the conditions
for the operator to be self-adjoint, is also discussed. The conclusions are
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(i) If the boundary conditions are separated, so that det M = det N = 0, then if the operator
is self-adjoint, M and N can always be chosen to be of the form (14), with M and N real.
In this case

B = n21

v1,0(1)∗
if n21 �= 0 B = − n22

u1,0(1)∗
if n22 �= 0. (35)

(ii) If the boundary conditions are non-separated, so that det M �= 0, det N �= 0, then if the
operator is self-adjoint, M and N can always be chosen so that one of them is real, say
N = NR , and the other one a real matrix times a phase: M = MR eiα, 0 � α < 2π . It
also follows that det MR = det NR . In this case

B = n12n21 − n11n22

n11u1,0(1)∗ + n12v1,0(1)∗
. (36)

The function f1,
√

λ mentioned earlier can now be identified. If we define

f1,
√

λ ≡ −det(M + NE1,
√

λ(1))

λ
= −B〈u1,0|u1,

√
λ〉 (37)

we see that it vanishes at the required values of λ, but is non-zero when λ = 0. However,
in our evaluation of the contour integral in the last section, it was also vital that the large
|√λ| behaviour for j = 1 and j = 2 were the same, so actually we need to replace
det(M + NE1,

√
λ(1)) in the integrand of the contour integral by (1 − λ)f1,

√
λ. This has

the required properties when both λ = 0 and λ �= 0, but in addition it behaves like
det(M + NE1,

√
λ(1)) for large |√λ|, also as required. So in order to derive an expression

for det′ L1/ det L2 we need to begin from

ζL1(s) − ζL2(s) = −1 +
1

2π i

∫
γ

dλ λ−s d

dλ
ln

(1 − λ)f1,
√

λ

det[M + NE2,
√

λ(1)]
(38)

where the contour γ encloses the point λ = 1 and the values of λ on the real axis which define
the eigenvalues.

It is understood that the zero mode has been omitted from the definition of the zeta
function. For definiteness we have assumed that the contour encloses λ = 1 such that the term
‘−1’ on the right-hand side corrects for the contribution due to the factor (1 − λ). Proceeding
as before, now noting that f1,eiθ/2

√
λ = f1,e−i(π−θ/2)

√
λ, we obtain

ζL1(s) − ζL2(s) = −1 + eis(π−θ) sin(πs)

π

∫ ∞

0
dλ λ−s d

dλ
ln

(1 + eiθλ)f1,eiθ/2
√

λ

det(M + NE2,eiθ/2
√

λ(1))
.

For the derivative at s = 0 this means

ζ ′
L1

(0) − ζ ′
L2

(0) = −ln
f1,0

det(M + NE2,0(1))
.

Using the notation of equations (20) and (37), this may be cast into the final form

det′ L1

det L2
= − B〈y1|y1〉

det[M + NY2(1)]
. (39)

4. Systems of differential operators

The extension from a single differential operator of the form (1) to a system of differential
equations is relatively straightforward, the main problem being one of notation. Provided that
the previous sections have been read, the discussion in this section should be clear, since it
parallels the case of a single operator. As an additional aid to understanding, we illustrate
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new concepts which are introduced on a specific example. Some of the more cumbersome
formulae which are not vital to an overall understanding of the formalism are relegated to
appendix C.

We consider the system of differential operators

Lj = − d

dx

(
Pj (x)

d

dx

)
Ir + Rj(x)

where Rj(x) is a Hermitian r × r matrix and j = 1, 2 labels the two different determinants. We
assume Pj (x) to be scalar, which is the relevant case for most applications. The second-order
problem is rewritten as a first-order problem in the standard way,

d

dx

(
uj,

√
λ(x)

vj,
√

λ(x)

)
= Dj,λ

(
uj,

√
λ(x)

vj,
√

λ(x)

)

with the matrix

Dj,λ(x) =
(

0r×r P −1
j (x) · Ir

Rj − λ · Ir 0r×r

)

and where now uj,
√

λ(x) and vj,
√

λ(x) are r-dimensional vectors. We define, as before, the
fundamental matrix as

Ej,
√

λ(x) =

u

(1)

j,
√

λ
(x) · · · u

(2r)

j,
√

λ
(x)

v
(1)

j,
√

λ
(x) · · · v

(2r)

j,
√

λ
(x)




with u
(σ)

j,
√

λ
(x), v

(σ)

j,
√

λ
(x), σ = 1, . . . , 2r , being again r-dimensional vectors. The boundary

conditions read

M

(
uj,

√
λ(0)

vj,
√

λ(0)

)
+ N

(
uj,

√
λ(1)

vj,
√

λ(1)

)
=

(
0

0

)
(40)

or, alternatively

(M + NEj,
√

λ(1))

(
uj,

√
λ(0)

vj,
√

λ(0)

)
=

(
0

0

)
. (41)

So the condition for the eigenvalues reads

det(M + NEj,
√

λ(1)) = 0. (42)

In the case that Pj (x) is scalar, the analysis in appendix B goes through. The only change is
that the heat kernel coefficients contain a trace over the internal degrees of freedom. With this
change, the asymptotic behaviour of the relevant integrand is known and for P1(x) = P2(x)

we can proceed as previously. In the absence of zero modes we find formally the same answer
as before,

det L1

det L2
= det(M + NY1(1))

det(M + NY2(1))
.

Let us next consider the case with zero modes. In order to explain the individual steps of the
general formalism that we are developing, we will illustrate each step using a specific example
encountered in the study of transition rates between metastable states in superconducting rings
[27, 28]. The differential operator in this problem is defined on the interval [−l/2, l/2] and
has the form

L1 =
(

− d2

dx2 + (1 − 2µ2) (1 − µ2) e2iµx

(1 − µ2) e−2iµx − d2

dx2 + (1 − 2µ2)

)
≡ − d2

dx2
I2 + R1(x). (43)
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Boundary conditions imposed are so-called twisted boundary conditions defined through

M = −diag(eiµl, e−iµl, eiµl, e−iµl) N = I4.

We will refer back to this example at suitable stages of our procedure.
The starting point for the general formalism is as before, namely (33). If we can derive a

relationship of the form

det(M + NE1,
√

λ(1)) = B[u1,
√

λ(x)v1,0(x)∗ − u1,0(x)∗v1,
√

λ(x)]1
0 (44)

where B is known, then from (33) we have that

det(M + NE1,
√

λ(1)) = Bλ〈u1,0|u1,
√

λ〉. (45)

This is precisely as in section 3, and allows us to identify the function f1,
√

λ, defined by (37),
which is to be used in the proof of the result.

So, let us return to the proof of (44). We will show that, if we appropriately normalize
uj,

√
λ(x), then by imposing all of the boundary conditions but one — so that λ is not constrained

to be an eigenvalue—we may write

M

(
u1,

√
λ(0)

v1,
√

λ(0)

)
+ N

(
u1,

√
λ(1)

v1,
√

λ(1)

)
=




0
0

· · ·
0

det(M + NE1,
√

λ(1))


 . (46)

This equation is exactly analogous to (29) in section 3, where we imposed only one out of the
two boundary conditions. Here there are 2r boundary conditions and we will impose 2r − 1
of them.

To obtain (46), we first write uj,
√

λ(x) as a linear combination of the 2r fundamental

solutions u
(σ)

j,
√

λ
(x)

uj,
√

λ(x) =
2r∑

σ=1

α(σ)u
(σ)

j,
√

λ
(x) ⇒ vj,

√
λ(x) =

2r∑
σ=1

α(σ)v
(σ)

j,
√

λ
(x) (47)

where we have dropped the j and
√

λ dependence from the α. Since Ej,
√

λ(0) = I2r ,

α(σ) =
{

uj,
√

λ,σ (0) if σ = 1, . . . , r

vj,
√

λ,σ−r (0) if σ = r + 1, . . . , 2r

where uj,
√

λ,σ (x) is the σ th entry of the vector uj,
√

λ(x), with a similar notation for vj,
√

λ(x).
Therefore using (41), but only imposing the first 2r − 1 boundary conditions, gives

(M + NEj,
√

λ(1))




α(1)

α(2)

· · ·
α(2r−1)

α(2r)




=




0
0

· · ·
0
∗


 . (48)
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First, suppose that det(M + NEj,
√

λ(1)) �= 0. Then, multiplying (48) by (M + NEj,
√

λ(1))−1

yields 


α(1)

α(2)

· · ·
α(2r−1)

α(2r)




= adj(M + NEj,
√

λ(1))

det(M + NEj,
√

λ(1))




0
0

· · ·
0
∗




where adj(M +NEj,
√

λ(1)) is the adjoint of the matrix M +NEj,
√

λ(1). We see that the choice
of det(M + NEj,

√
λ(1)) for ∗ is natural, since in this case the expansion coefficients have the

simple form

α(σ) = adj(M + NEj,
√

λ(1))σ2r . (49)

In the r = 1 case this simply leads to the results (25) and (27). If det(M + NEj,
√

λ(1)) = 0,
then by (42) uj,

√
λ(x) is an eigenfunction which satisfies the boundary conditions, and so (46)

also holds.
Altogether there are 4r boundary data, r data coming from each of u1,

√
λ(0), v1,

√
λ(0),

u1,
√

λ(1) and v1,
√

λ(1). Equation (46) allows us to express 2r of the boundary data in terms of
the other 2r data, which we call the complementary ones. Suppose that b is a vector consisting
of the 2r boundary data that we wish to express by the complementary ones, collected in bc.
Expressing (46) in terms of these values gives

Zb + Zcbc =




0
0

· · ·
0

det(M + NE1,
√

λ(1))


 (50)

where Z and Zc are (2r × 2r) matrices built from the various components of M and N. To
state b, bc,Z and Zc explicitly, we need to introduce several indices which refer to the ways in
which the boundary data are re-distributed within each of the four boundary data groups. Let
i, j, k, l be indices: all of which can take on values from 0 to r and such that i + j + k + l = 2r .
Let {a1, . . . , ar} and {c1, . . . , cr} be arbitrary permutations of the numbers {1, . . . , r}, and also
let {b1, . . . , br} and {d1, . . . , dr} be permutations of the numbers {r + 1, . . . , 2r}. These index
groups are such that mai

acts on boundary data in u1,
√

λ(0),mbj
acts in v1,

√
λ(0), nck

acts in
u1,

√
λ(1) and finally ndl

acts in v1,
√

λ(1). The general form of b, bc,Z and Zc are discussed in
appendix C, from which it is clear that b can be expressed through bc only if the matrix Z is
invertible. The choice of the data b has to guarantee this is indeed the case. That this is always
possible follows from the fact that M and N define boundary conditions such that (46) has a
unique solution for λ an eigenvalue. If a suitable choice of b were not possible, the boundary
value problem would not have a unique solution.

For the example described by (43), the most natural choice for b, bc, is

b =




u1,
√

λ,1(l/2)

u1,
√

λ,2(l/2)

v1,
√

λ,1(l/2)

v1,
√

λ,2(l/2)


 bc =




u1,
√

λ,1(−l/2)

u1,
√

λ,2(−l/2)

v1,
√

λ,1(−l/2)

v1,
√

λ,2(−l/2)


 (51)

so that Z = N (=I4) and Zc = M (= −diag(eiµl, e−iµl, eiµl, e−iµl)). This guarantees Z is
invertible and b can be expressed through bc.
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Alternatively one could, for instance, choose

b(alt) =




u1,
√

λ,1(−l/2)

u1,
√

λ,2(−l/2)

v1,
√

λ,1(−l/2)

v1,
√

λ,2(−l/2)


 b(alt)

c =




u1,
√

λ,1(l/2)

u1,
√

λ,2(l/2)

v1,
√

λ,1(l/2)

v1,
√

λ,2(l/2)


 . (52)

In this case

Z(alt) = M Z(alt)
c = N.

Again, Z is invertible and b can be expressed through bc. Clearly, there are many other choices
of b, bc and the associated Z,Zc.

Going back to the general formalism, given a suitable particular choice of Z , this allows
us to express the 2r data b by the complementary 2r data bc. The explicit expression is given
by equation (C.3) in appendix C. The entries of b can now be substituted into the left-hand
side of (33) and the terms collected together. As discussed in appendix C this leads to (44)
with

B−1 =
k∑

α=1

Z−1
(i+j+α)(2r)v1,0,cα

(1)∗ −
l∑

α=1

Z−1
(i+j+k+α)(2r)u1,0,dα−r (1)∗

−
i∑

α=1

Z−1
α(2r)v1,0,aα

(0)∗ +
j∑

α=1

Z−1
(i+α)(2r)u1,0,bα−r (0)∗ (53)

where Z−1
βγ refers to the (βγ )-component of Z−1.

To illustrate the use of this result let us apply it again to the example (43).
For the choice (51) we have i = 0, j = 0, k = 2, l = 2 and we obtain

[u1,
√

λ(x)v1,0(x)∗ − u1,0(x)∗v1,
√

λ(x)]l/2
−l/2 = −det(M + NE1,

√
λ(l/2))u1,0,2(l/2)∗.

For the choice (52) we have i = 2, j = 2, k = 0, l = 0 and we obtain

[u1,
√

λ(x)v1,0(x)∗ − u1,0(x)∗v1,
√

λ(x)]l/2
−l/2 = −det(M + NE1,

√
λ(l/2)) eiµlu1,0,2(−l/2)∗.

Comparing with (44) we see that for the choice (51) B−1 = −u1,0,2(l/2)∗ and for the choice
(52) B−1 = −eiµlu1,0,2(−l/2)∗. Taking into account the boundary conditions for the zero
mode u1,0(x), the two answers are seen to agree. Furthermore, this answer agrees with the
result calculated in [28].

Returning to the general case, we see that we have proved the result (45) with B given
by (53). The proof now proceeds as in section 3 and we once again find the result (39). The
function y1(x) in this result is the zero mode, and satisfies the boundary conditions, but it has
to be appropriately normalized:

y1(x) =
2r∑

σ=1

adj(M + NE1,0(1))σ2ry
(σ )
1 (x) (54)

where the y
(σ)
1 (x) are the 2r fundamental solutions chosen to satisfy Y1(0) = I2r .

5. Conclusion

The two main results of this paper are (21) and (39). They give expressions for the ratio of
functional determinants in terms of the nature of the boundary conditions and the solution of
the homogeneous equations formed from the operators in question. The first result holds if
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the equations have no zero modes, and the second holds if such an eigenvalue exists, but has
been excluded from the evaluation of the functional determinant. These results agree with
those obtained in a previous paper [1], but now the range of operators for which they are valid
have been considerably extended to: those which have a metric Pj (x) �= 1, those with negative
eigenvalues and systems of operators. Although the results are simple to state, a slightly more
thorough appreciation of the method is required in order to apply them to a particular case. For
instance, the solution y1(x), which appears in the results, is the solution of the homogeneous
equation satisfying the boundary conditions. This solution is only defined up to a constant,
but a particular choice for this constant has to be made if the simpler form of (21)—given by
(31)—or the zero-mode result (39), is to be used. An explicit form for y1(x) is given by (54).
The choice of normalization originates from requiring that the right-hand side of (29) or (46)
is the required determinant, but with a constant of proportionality which is equal to 1.

Once the suitably normalized solution y1(x) has been obtained, the rest of the calculation
is straightforward. The result only depends on this function—and on none of the other
eigenfunctions—and on the matrices M and N which define the boundary conditions of the
problem under consideration. In addition, in some applications, the norm 〈y1|y1〉 will cancel
out with the Jacobian of the transformation to collective coordinates, and therefore will not be
required. In this case, however, it will be necessary to check that the zero-mode has the same
normalization as has been adopted in the derivation of (39). So for this case only the properties
of y1(x) at the boundaries would be required. If an analytic expression for y1(x) cannot be
obtained, there should be little difficulty in obtaining numerical values for the boundary data
on this function. While the proof of the results which we have obtained are easily accessible,
they need not be understood in order to apply the results to a particular problem.

We believe that the results presented here cover a wide range of problems where they
are likely to prove useful. There are still a number of possible extensions that are open to
investigation. Examples include operators with derivatives higher than the second, single
determinants rather than ratios of determinants and operators in more than one dimension. We
hope that, in addition to the concrete results which we have obtained, this paper will serve to
stimulate work on these and related problems.

Acknowledgments

The research of K Kirsten was partially supported by the Max Planck Institute for Mathematics
in the Sciences (Leipzig, Germany) and the Baylor University Summer Sabbatical Programme.

Appendix A. Self-adjoint condition and related questions

In this appendix we will consider two technical points encountered in section 3. They are

(1) Condition for problem to be self-adjoint. The boundary conditions considered in section 3
are given by (22) and (23):

m11uj,
√

λ(0) + m12vj,
√

λ(0) + n11uj,
√

λ(1) + n12vj,
√

λ(1) = 0

m21uj,
√

λ(0) + m22vj,
√

λ(0) + n21uj,
√

λ(1) + n22vj,
√

λ(1) = 0.
(A.1)

Suppose that U
(I)
j,

√
λ
(x) and U

(II)
j,

√
λ
(x) are any two functions (which are not, in general,

solutions of (2)) which satisfy these boundary conditions. The condition for the problem
to be self-adjoint is that[

U
(I)
j,

√
λ
(x)V

(II)
j,

√
λ
(x)∗ − U

(II)
j,

√
λ
(x)∗V (I)

j,
√

λ
(x)

]1
0 = 0 (A.2)
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where, as in the main text, Vj,
√

λ(x) = Pj (x)U ′
j,

√
λ
(x). We wish to solve for any two

members of the set
{
U

(I)
j,

√
λ
(0), V

(I)
j,

√
λ
(0), U

(I)
j,

√
λ
(1), V

(I)
j,

√
λ
(1)

}
in terms of the other two by

using the two boundary conditions (and similarly for the second solution II). Substituting
these four functions into (A.2) in terms of the other four will give us the conditions that
need to be imposed on the matrices M and N for the problem to be self-adjoint.

(2) Proof of the first equality in equation (34). In this case the λ = 0 solution u1,0(x)

will satisfy the boundary conditions (A.1), but the λ �= 0 solution will only satisfy one
boundary condition and a normalization condition, that is (see equation (29)):

m11u1,
√

λ(0) + m12v1,
√

λ(0) + n11u1,
√

λ(1) + n12v1,
√

λ(1) = 0

m21u1,
√

λ(0) + m22v1,
√

λ(0) + n21u1,
√

λ(1) + n22v1,
√

λ(1) = det(M + NE1,
√

λ(1)).
(A.3)

As discussed in section 3, we wish to solve for any two members of the set
{u1,

√
λ(0), v1,

√
λ(0), u1,

√
λ(1), v1,

√
λ(1)} in terms of the other two and det(M +NE1,

√
λ(1))

by using the conditions (A.3). Similarly, we wish to solve for any two members of the
set {u1,0(0)∗, v1,0(0)∗, u1,0(1)∗, v1,0(1)∗}, in terms of the other two, this time using (A.1).
Substituting these four functions into the left-hand side of (33), in terms of the other four,
will enable us to show that

[u1,
√

λ(x)v1,0(x)∗ − u1,0(x)∗v1,
√

λ(x)]1
0 ∝ det(M + NE1,

√
λ(1)) (A.4)

where the constant of proportionality is independent of λ, and only depends on the nature
of the boundary conditions and on the λ = 0 solution u1,0(x) at the boundaries.

It is clear that these two questions are related. In fact, the proof of the first point is a special
case of the proof of the second; we simply need to set det(M + NE1,

√
λ(1)) equal to zero

everywhere. We will prove the result first in the case of separated boundary conditions and
then for non-separated ones.

(i) For separated boundary conditions we have det N = 0 and det M = 0, and M and N may
be chosen to have the form (14).

If m12 �= 0 and n22 �= 0, then (A.3) may be written in the form

v1,
√

λ(0) = −m11

m12
u1,

√
λ(0)

v1,
√

λ(1) = det(M + NE1,
√

λ(1))

n22
− n21

n22
u1,

√
λ(1).

Equivalent results hold when λ = 0 if the determinant is set equal to zero. Eliminating
the v in terms of the u yields

[u1,
√

λ(x)v1,0(x)∗ − u1,0(x)∗v1,
√

λ(x)]1
0 = −u1,0(1)∗

n22
det(M + NE1,

√
λ(1))

+ u1,0(1)∗u1,
√

λ(1)

[
n21

n22
− n∗

21

n∗
22

]
− u1,0(0)∗u1,

√
λ(0)

[
m11

m12
− m∗

11

m∗
12

]
.

If we first of all assume that all of the boundary conditions are satisfied, then the
determinant is not present and we see that the general condition for the operator to
be self-adjoint is that the ratios m11/m12 and n21/n22 be real. Since we always have the
freedom to multiply the first line of (11) by an arbitrary complex number and the second
line by another arbitrary complex number, we can always choose m12 and n22 to be real,
in which case we deduce that m11 and n21 should also be real. Therefore if the operator
is self-adjoint, the matrices M and N can always be chosen to be real.
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If m12 = 0, n22 �= 0, then u1,
√

λ(0) = 0 and u1,0(0) = 0. The above expression then
tells us only that n21/n22 must be real if the operator is to be self-adjoint. But now m11

and n22 may be chosen to be real, and we once again find that M and N may be taken to
be real. The remaining cases where n22 = 0 may be treated in the same way.

In summary, when det M = det N = 0, if the operator is self-adjoint then M and N
may always be chosen to be real, and

[u1,
√

λ(x)v1,0(x)∗ − u1,0(x)∗v1,
√

λ(x)]1
0

=
{− u1,0(1)∗

n22
det(M + NE1,

√
λ(1)) if n22 �= 0

+ v1,0(1)∗

n21
det(M + NE1,

√
λ(1)) if n21 �= 0.

(A.5)

Through the boundary condition for the zero mode, these two forms are clearly equivalent
if both n21 and n22 are non-zero.

(ii) Suppose that det N �= 0. Then multiplying (29) by N−1 and taking j = 1 gives(
u1,

√
λ(1)

v1,
√

λ(1)

)
= 1

det N

(
n22 −n12

−n21 n11

)(
0

det(M + NE1,
√

λ(1))

)
−

(
d11 d12

d21 d22

)(
u1,

√
λ(0)

v1,
√

λ(0)

)

where the dij are the elements of the matrix D ≡ N−1M . Substituting for u1,
√

λ(1) and
v1,

√
λ(1) (and their λ = 0 counterparts, which do not contain the det(M + NE1,

√
λ(1))

term) gives

[u1,
√

λ(x)v1,0(x)∗ − u1,0(x)∗v1,
√

λ(x)]1
0

= − (n11u1,0(1)∗ + n12v1,0(1)∗)
det N

det(M + NE1,
√

λ(1))

+ u1,0(0)∗v1,
√

λ(0){1 + d12d
∗
21 − d∗

11d22}
+ v1,0(0)∗v1,

√
λ(0){d12d

∗
22 − d∗

12d22}
− v1,0(0)∗u1,

√
λ(0){1 + d∗

12d21 − d11d
∗
22}

−u1,0(0)∗u1,
√

λ(0){d21d
∗
11 − d∗

21d11}.
If all boundary conditions were satisfied, the first term on the right-hand side of this
expression would be absent, and the general conditions for the operator to be self-adjoint
are given by the vanishing of the brackets in the four remaining terms

d∗
11d22 − d12d

∗
21 = 1 d11d

∗
21 = d∗

11d21

d11d
∗
22 − d∗

12d21 = 1 d12d
∗
22 = d∗

12d22.
(A.6)

An examination of the conditions (A.6) shows that they may be written in the alternative
form

dij = rij eiα r11r22 − r12r21 = 1 0 � α < 2π rij ∈ R. (A.7)

In other words, D = R eiα , where R is a 2 × 2 real matrix with entries rij and det R = 1.
Therefore if we multiply (11) by N−1 we see that we may take M = R eiα,N = I2, or
equivalently if we multiply by a real non-singular matrix NR,M = MR eiα,N = NR ,
where MR = NRR. Note that det MR = det NR .

Appendix B. Asymptotic behaviour of solutions at endpoints

In this appendix we are going to analyse the behaviour of (d/dλ) ln det[M + NEj,
√

λ(1)] for

Im
√

λ → ±∞ as it is needed in equation (16). We will omit the index j and consider the
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general Sturm–Liouville problem

L = − d

dx

(
P(x)

d

dx

)
+ R(x)

with the boundary conditions (11) imposed. The zeta function associated with this problem is
then given by equation (15),

ζL(s) = 1

2π i

∫
γ

dλ λ−s d

dλ
ln det[M + NE√

λ(1)].

The meromorphic structure of the zeta function is determined by the large-Im
√

λ behaviour
of the integrand. The results in [29] suggest that as Im

√
λ → ±∞ the asymptotic expansion

has the general form

d

dλ
ln det[M + NE√

λ(1)] ∼
∞∑

n=1

(
√

λ)−nAn−1. (B.1)

Note that exponentially small terms have been dropped.
We will now show that the coefficients An−1 are related to the associated heat kernel

coefficients and use this correspondence to prove that the first two coefficients do not depend
on R(x). As a consequence we can trivially conclude the behaviour (17).

We start summarizing some well-known facts about the heat kernel coefficients and their
relationship to the zeta function [30, 26]. The heat trace is defined as

K(t) =
∑

l

e−λl t

where λl are the eigenvalues of the operator under consideration. As t → 0, this sum clearly
diverges, since we are summing over infinitely many eigenvalues. The behaviour as t → 0
may be extracted from a classical theorem of Weyl [31], which, in the present context, states
that for a second-order elliptic differential operator the eigenvalues behave asymptotically for
l → ∞ as

λ
1/2
l ∼ πl∫ 1

0 dx 1√
P(x)

.

With the help of a resummation,
∞∑

l=−∞
e−t l2 =

√
π

t

∞∑
l=−∞

exp

(
−π2l2

t

)

it is seen that this implies K(t) = O(t−1/2). In more detail, one can show the asymptotic
t → 0 behaviour

K(t) ∼
∞∑

j=0

aj t
(j−1)/2 (B.2)

where exponentially small terms as t → 0 have been neglected. Here, al are the so-called heat
kernel coefficients. They depend on P(x), R(x) and on the boundary conditions imposed. We
have, for example,

a0 = (4π)−1/2
∫ 1

0
dx

1√
P(x)

a1 = c(M,N)

where the constant c(M,N), as indicated, depends on the boundary condition imposed. The
next coefficient a2 involves the dependence on R(x). As this is of no relevance for us, we do
not display higher coefficients.
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The heat kernel coefficients determine the residues and certain function values of the zeta
function. To show how the relationship is derived we assume that no zero modes are present;
otherwise, in the following calculations we have to exclude them explicitly.

First by definition

ζL(s) =
∞∑
l=0

λ−s
l = 1

	(s)

∞∑
l=0

∫ ∞

0
dt t s−1 e−λl t = 1

	(s)

∫ ∞

0
dt t s−1K(t)

valid for Re s > 1/2. As is clear, the meromorphic structure of ζL(s) is related to the t → 0
behaviour of K(t). Thus the poles of ζL(s)	(s) are determined by the integrals∫ 1

0
dt t s−1

∞∑
j=0

aj t
(j−1)/2.

In detail we have

Res ζL(z) = a1−2z

	(z)
for z = 1

2
,−2l + 1

2
, l ∈ N0

ζL(−q) = (−1)qq!a1+2q for q ∈ N0.

(B.3)

The asymptotic expansion (B.1) determines the above properties of the zeta function and thus
relates An and an. Proceeding as before, see (18), we shrink the contour to the branch cut at
the angle θ . For the case without zero modes, as λ → 0 we have the behaviour λ−s and as
λ → ∞ we have λ−s−1/2. The λ → 0 behaviour imposes Re s < 1, whereas the λ → ∞
behaviour imposes Re s > 1/2. This shows that the representation, as given, is valid for
1/2 < Re s < 1. It also shows that the residues and function values, (B.3), which all lie to the
left of Re s > 1/2, are solely determined by the large-λ behaviour. Keeping only the relevant
terms to reproduce (B.3), we continue

ζL(s) ∼ eis(π−θ) sin(πs)

π

∫ ∞

1
dλ λ−s eiθ

∞∑
n=1

e−inθ/2λ−n/2An−1

= eis(π−θ) sin(πs)

π

∞∑
n=1

eiθ(1−n/2) An−1

s − 1 + n/2
(B.4)

which can be analysed easily in the whole complex plane. We see that for n odd,

Res ζL

(
1 − n

2

)
= i

π
An−1

which shows

An−1 = −iπ
an−1

	(1 − n/2)
(B.5)

whereas for n even,

ζL

(
1 − n

2

)
= An−1

and so

An−1 = (−1)n/2−1(n/2 − 1)!an−1. (B.6)

In particular,

A0 = − iπa0

	(1/2)
= − i

2

∫ 1

0
dx

1√
P(x)

A1 = a1 = c(M,N)

and (17) follows.
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cut for λ−s

λ-plane

γ1

γ2

Figure 2. Contour γ in the complex plane.

Note that in (B.4) we have eiθ/2
√

λ with positive imaginary part. A negative imaginary
part, such as in −eiθ/2

√
λ, changes the sign of An−1 for n odd.

If there are zero modes, say r in number, the equation for a1 changes slightly. First, given
we exclude the zero mode from the definition of the zeta function, we have now

ζL(s) = 1

	(s)

∫ ∞

0
dt t s−1(K(t) − r) Re s >

1

2
.

This shows that (B.3) remains unchanged apart from

ζL(0) = a1 − r.

Given there are r zero modes, for |λ| � 1, we have

d

dλ
ln det[M + NE√

λ(1)] ∼ r

λ
+ · · · .

Repeating the discussion below (B.3), we see that this time the λ → 0 behaviour imposes
Re s < 0, which contradicts the condition Re s > 1/2 from |λ| → ∞. Therefore, we cannot
shrink the contour to the cut, but instead use the contour given in figure 2, consisting of a small
circle γ1 of radius ε, and of γ2 being the part of γ shrunk to the cut.

Along the contour γ2 we can proceed as previously and obtain

ζL,γ2(s) = eis(π−θ) sin(πs)

π

∫ ∞

ε

dλ λ−s d

dλ
ln det[M + NEeiθ/2

√
λ(1)]. (B.7)

For the contributions along the circle γ1 we obtain

ζL,γ1(s) = −eis(π−θ) sin(πs)

π

rε−s

s
. (B.8)

The contribution of (B.7) to the quantities in (B.3) is evaluated precisely as before. In addition,
as s → 0, (B.8) produces

ζL,γ1(0) = −r.

As a result, the asymptotic behaviour is determined again through equations (B.5) and (B.6).
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Appendix C. Zero modes in systems of differential operators

In section 4 we introduced the vectors b and bc and the matrices Z and Zc. The 2r-
dimensional vectors b and bc together contain the 4r boundary data: r data coming from
each of u1,

√
λ(0), v1,

√
λ(0), u1,

√
λ(1) and v1,

√
λ(1). The 2r × 2r matrices Z and Zc together

contain all the elements of the matrices M and N but rearranged in a way which corresponds
to the organization of the boundary data in b and bc. The purpose of this appendix is to make
explicit the notation required to describe which of the 2r boundary data goes into b and which
goes into bc and which of the elements of M and N go into Z and which go into Zc.

To do this we introduce indices i, j, k, l and permutations {a1, . . . , ar}, {b1, . . . , br},
{c1, . . . , cr} and {d1, . . . , dr} as in section 4. Let us recall that these index groups are such
that mai

acts on boundary data in u1,
√

λ(0),mbj
acts in v1,

√
λ(0), nck

acts in u1,
√

λ(1) and ndl

acts in v1,
√

λ(1). So if

b =




u1,
√

λ,a1
(0)

· · ·
u1,

√
λ,ai

(0)

v1,
√

λ,b1−r (0)

· · ·
v1,

√
λ,bj −r (0)

u1,
√

λ,c1
(1)

· · ·
u1,

√
λ,ck

(1)

v1,
√

λ,d1−r (1)

· · ·
v1,

√
λ,dl−r (1)




bc =




u1,
√

λ,ai+1
(0)

· · ·
u1,

√
λ,ar

(0)

v1,
√

λ,bj+1−r (0)

· · ·
v1,

√
λ,br−r (0)

u1,
√

λ,ck+1
(1)

· · ·
u1,

√
λ,cr

(1)

v1,
√

λ,dl+1−r (1)

· · ·
v1,

√
λ,dr−r (1)




then

Z =




m1a1 · · · m1ai
m1b1 · · · m1bj

· · · · · · · · · · · · · · · · · ·
m(2r)a1 · · · m(2r)ai

m(2r)b1 · · · m(2r)bj

n1c1 · · · n1ck
n1d1 · · · n1dl

· · · · · · · · · · · · · · · · · ·
n(2r)c1 · · · n(2r)ck

n(2r)d1 · · · n(2r)dl


 (C.1)

and

Zc =




m1ai+1 · · · m1ar
m1bj+1 · · · m1br

· · · · · · · · · · · · · · · · · ·
m(2r)ai+1 · · · m(2r)ar

m(2r)bj+1 · · · m(2r)br

n1ck+1 · · · n1cr
n1dl+1 · · · n1dr

· · · · · · · · · · · · · · · · · ·
n(2r)ck+1 · · · n(2r)cr

n(2r)dl+1 · · · n(2r)dr


 . (C.2)

The notation is such that if one of the indices i, j, k, l equals zero, then the corresponding
entries above are simply absent. It is clear from (50) that b can be expressed through bc only
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if the matrix Z is invertible. If this is the case then, for a particular choice of Z , (50) allows
us to express the 2r data b in terms of the complementary 2r data bc as


u1,
√

λ,a1
(0)

· · ·
u1,

√
λ,ai

(0)

v1,
√

λ,b1−r (0)

· · ·
v1,

√
λ,bj −r (0)

u1,
√

λ,c1
(1)

· · ·
u1,

√
λ,ck

(1)

v1,
√

λ,d1−r (1)

· · ·
v1,

√
λ,dl−r (1)




= −Z−1Zc




u1,
√

λ,ai+1
(0)

· · ·
u1,

√
λ,ar

(0)

v1,
√

λ,bj+1−r (0)

· · ·
v1,

√
λ,br−r (0)

u1,
√

λ,ck+1
(1)

· · ·
u1,

√
λ,cr

(1)

v1,
√

λ,dl+1−r (1)

· · ·
v1,

√
λ,dr−r (1)




+ Z−1




0
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
0

det(M + NE1,
√

λ(1))




. (C.3)

We may now substitute the 2r quantities on the left-hand side of (C.3) into the left-hand side
of (33). As we have argued for the case r = 1, all terms that do not depend explicitly on the
term containing det(M + NE1,

√
λ(1)) have to cancel each other due to the self-adjointness of

the boundary value problem. Without attempting to state the conditions required for M and N
(this does not do any harm simply because they are not needed), we keep only terms that do
depend on the term det(M + NE1,

√
λ(1)), knowing the others have to cancel. In this way we

arrive at

[u1,
√

λ(x)v1,0(x)∗ − u1,0(x)∗v1,
√

λ(x)]1
0

= det(M + NE1,
√

λ(1))

{
k∑

α=1

Z−1
(i+j+α)(2r)v1,0,cα

(1)∗

−
l∑

α=1

Z−1
(i+j+k+α)(2r)u1,0,dα−r (1)∗ −

i∑
α=1

Z−1
α(2r)v1,0,aα

(0)∗

+
j∑

α=1

Z−1
(i+α)(2r)u1,0,bα−r (0)∗

}
(C.4)

where Z−1
βγ refers to the (βγ )-component of Z−1. This is of the desired form (44) with B

given by (53).
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